

S.J.L. Billinge

Dept. Physics and Astronomy Michigan State University.

Summary

Proposed DOE(/NSF) grand challenge

Solve the nanostructure problem

(robust, atomic resolution structure of nanoparticles)

- Atomic Structure Underpins Materials Properties
 - Crystallography revolutionized Materials Science and Molecular Biology in the early/mid 20th Century
- Crystallography fails for nanostructured materials
 - Nanoparticles are not periodically long-range ordered, by definition
 - The nanostructure gives the particles their interesting properties –
 this is the *definition* of nanotechnology
- The Nanostructure problem
 - How do we get robust atomic resolution structural solutions from nanostructured materials?

The miracle of crystallography

- 1. Put a single crystal on your diffractometer
- 2. When everything goes well, software will tell you where the atoms are (Space group, lattice parameters, atomic coordinates)

How does it work?

 The inverse problem is not directly invertable because of the loss of phase information, the "Phase Problem"

However,

- There is sufficient information in the data to reconstruct the structure with reasonable accuracy: there are many more Bragg peak intensities than information needed
- There are good algorithms for solving the non-linear optimization problem (direct methods, etc. etc.)

http://nirt.pa.msu.edu

- Bragg peaks become broad and overlap => loss of information
 - Structure becomes more complex => more information needed to specify it
- Crystallographic methods fail!

- Things are better in real-space using the atomic Pair Distribution Function (PDF) method (peaks are sharp in both cases).
- Structure models can be differentiated and refined
- However: No ab-initio structure solution method
 - Poor match between information required and information available
 - Algorithms not so well developed.

Solution to the Nanostructure Problem

- 1. Make a well conditioned problem for nanostructures. Where necessary:
 - 1. Add constraints: Incorporate complementary data-sets (PDF, XAFS, NMR, imaging data...)
 - 2. Remove degrees of freedom: Incorporate prior knowledge (local symmetries, coordinations, etc.)
- 2. Have algorithms/programs to solve it
- Progress being made in Billinge-group (next few slides)
- Critical role for DOE facilities because of the need for complementary techniques

- Start with a distorted model for copper (blue curve in a)
- Refine to PDF data (dots) alone (blue curve in b)
- Refine to PDF and XAFS data together (red curve

-refinement led to a better structural solution (preliminary result)

Rapid Acquisition PDF (RAPDF): Measuring PDFs in a few seconds

Chupas et al., J. Appl. Crystallogr. (2003)

Modeling nanoscale clusters

- Nanoparticle structure modeling, intra- and interparticle information (collaboration with Ming Lei and Mike Thorpe)
- Excellent *quantitative* agreement for intra- and inter- particle order
- Now do something different: Start with random arrangement of atoms + PDF data and determine the structure *ab-initio*

Billinge-group activities-2: *ab-initio* structure solution directly from PDF data

Billinge-group activities-2: *ab-initio* structure solution directly from PDF data

Summary

Proposed DOE(/NSF) Grand Challenge
 Solve the nanostructure problem

Possible routes forward:

- Role of DOE facilities =>coordinate and invest in beamlines for complementary techniques:
 - PDF/total scattering (x-ray, neutron, anomalous, isotopically substituted
 - XAFS
 - NMR
 - Imaging (TEM/STM/diffraction imaging...)
- Coordination of access and data analysis
 - Autonomous "Nanostructure Center":
 - Clearing house for nanostructure determinations
 - Home for data analysis theory and computation developments